
Issues and Comments about Object Oriented Technology in Aviation

Issue

Topic Issue Statement

1 Dead/ deactivated
code

Deactivated Code will be found in any application that uses
general purposed libraries or object-oriented frameworks. (Note
that this is the case where unused code is NOT removed by smart
linkers.)

2 Dynamic binding/
dispatch

Flow Analysis, recommended for Levels A-C, is complicated by
Dynamic Dispatch (just which method in the inheritance
hierarchy is going to be called?).

3 Dynamic binding/
dispatch

Timing Analysis, recommended for Levels A-D is complicated
by Dynamic Dispatch (just how much time will be expended
determining which method to call?).

4 Dynamic binding/
dispatch

Requirements Testing, recommended for Levels A-D, and
Structural Coverage Analysis, recommended for Levels A-C, are
complicated by Inheritance, Overriding and Dynamic Dispatch
(just how much of the existing verification of the parent class can
be reused in its subclasses?).

5 Dynamic binding/
dispatch

Structural Coverage Analysis, recommended for Levels A-C, is
complicated by Dynamic Dispatch (just which method in the
inheritance hierarchy does the execution apply to?).

6 Dynamic binding/
dispatch

Conformance to the guidelines in DO-178B concerning
traceability from source code to object code for Level A software
is complicated by Dynamic Dispatch (how is a dynamically
dispatched call represented in the object code?).

7 Dynamic binding/
dispatch

Polymorphic, dynamically bound messages can result in code that
is error prone and hard to understand.

8 Dynamic binding/
dispatch

Dynamic dispatch presents a problem with regard to the
traceability of source code to object code that requires “additional
verification” for level A systems as dictated by DO-178B section
6.4.4.2b.

9 Dynamic binding/
dispatch

Dynamic dispatch complicates flow analysis, symbolic analysis,
and structural coverage analysis.

10 Dynamic binding/
dispatch

Inheritance, polymorphism, and linkage can lead to ambiguity.

11 Dynamic binding/
dispatch

The use of inheritance and polymorphism may cause difficulties
in obtaining structural coverage, particularly decision coverage
and MC/DC

12 Dynamic binding/
dispatch

Source to object code correspondence will vary between
compilers for inheritance and polymorphism.

13 Dynamic binding/
dispatch

Polymorphic and overloaded functions may make tracing and
verifying the code difficult.

14 Inheritance Requirements Testing, recommended for Levels A-D, and
Structural Coverage Analysis, recommended for Levels A-C, are
complicated by Inheritance, Overriding and Dynamic Dispatch
(just how much of the existing verification of the parent class can
be reused in its subclasses?).

15 Inheritance Multiple interface inheritance can introduce cases in which the
developer’s intent is ambiguous. (when the same definition is
inherited from more than one source is it intended to represent the
same operation or a different one?)

16 Inheritance Flow Analysis and Structural Coverage Analysis, recommended
for Levels A-C, are complicated by Multiple Implementation
Inheritance (just which of the inherited implementations of a
method is going to be called and which of the inherited
implementations of an attribute is going to be referenced?). The
situation is complicated by the fact that inherited elements may
reference one another and interact in subtle ways which directly
affect the behavior of the resulting system.

17 Inheritance Use of inheritance (either single or multiple) raises issues of
compatibility between classes and subclasses.

18 Inheritance Inheritance and overriding raise a number of issues with respect
to testing: “Should you retest inherited methods? Can you reuse
superclass tests for inherited and overridden methods? To what
extent should you exercise interaction among methods of all
superclasses and of the subclass under test?”

19 Inheritance Inheritance can introduce problems related to initialization. “Deep
class hierarchies [in particular] can lead to initialization bugs.”
There is also a risk that a subclass method will be called (via
dynamic dispatch) by a higher level constructor before the
attributes associated with the subclass have been initialized.

20 Inheritance “A subclass-specific implementation of a superclass method is
[accidentally] omitted. As a result, that superclass method might
be incorrectly bound to a subclass object, and a state could result
that was valid for the superclass but invalid for the subclass
owing to a stronger subclass invariant. For example, Object-level
methods like isEqual or copy are not overridden with a necessary
subclass implementation”.

21 Inheritance “A subclass [may be] incorrectly located in a hierarchy. For
example, a developer locates SquareWindow as a subclass of
RectangularWindow, reasoning that a square is a special case of a
rectangle ... Suppose that [the method] resize(x, y) is inherited by
SquareWindow. It allows different lengths for adjacent sides,
which causes SquareWindow to fail after it has been resized. This
situation is a design problem: a square is not a kind of a rectangle,
or vice versa. Instead both are kinds of four-sided polygons. The
corresponding design solution is a superclass FourSidedWindow,
of which RectangularWindow and SquareWindow are
subclasses.”

22 Inheritance “A subclass either does not accept all messages that the
superclass accepts or leaves the object in a state that is illegal in
the superclass. This situation can occur in a hierarchy that should
implement a subtype relationship that conforms to the Liskov
substitution principle.”

23 Inheritance “A subclass computes values that are not consistent with the
superclass invariant or superclass state invariants.”

24 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or
more subclasses) are error-prone, even when they conform to
good design practice. The wrong variable type, variable, or
method may be inherited, for example, due to confusion about a
multiple inheritance structure”

25 Inheritance The ability of a subclass to directly reference inherited attributes
tightly couples the definitions of the two classes.

26 Inheritance Inheritance can be abused by using it as a “kind of code-sharing
macro to support hacks without regard to the resulting semantics”

27 Inheritance When the same operation is inherited by an interface via more
than one path through the interface hierarchy (repeated

inheritance), it may be unclear whether this should result in a
single operation in the subinterface, or in multiple operations.

28 Inheritance When a subinterface inherits different definitions of the same
operation [as a result of redefinition along separate paths], it may
be unclear whether/how they should be combined in the resulting
subinterface.

29 Inheritance Use of multiple inheritance can lead to “name clashes” when
more than one parent independently defines an operation with the
same signature.

30 Inheritance When different parent interfaces define operations with different
names but compatible specifications, it is unclear whether it
should be possible to merge them in a subinterface.

31 Inheritance It is unclear whether the normal overload resolution rules should
apply between operations inherited from different superinterfaces
or whether they should not (as in C++).

32 Inheritance It is important that the overriding of one operation by another and
the joining of operations inherited from different sources always
be intentional rather than accidental.

33 Inheritance Multiple inheritance complicates the class hierarchy
34 Inheritance Multiple inheritance complicates configuration control
35 Inheritance When inheritance is used in the design, special care must be taken

to maintain traceability. This is particularly a concern if multiple
inheritance is used.

36 Inheritance Source to object code correspondence will vary between
compilers for inheritance and polymorphism.

37 Inheritance Overuse of inheritance, particularly multiple inheritance, can lead
to unintended connections among classes, which could lead to
difficulty in meeting the DO-178B/ED-12B objective of data and
control coupling.

38 Inheritance Multiple inheritance should be avoided in safety critical, certified
systems.

39 Inheritance “Top-heavy multiple inheritance and very deep hierarchies (six or
more subclasses) are error-prone, even when they conform to
good design practice. The wrong variable type, variable, or
method may be inherited, for example, due to confusion about a
multiple inheritance structure”

40 Inheritance Reliance on programmer specified optimizations of the
inheritance hierarchy (invasive inheritance) is potentially error
prone and unsuitable for safety critical applications.

41 Inheritance Inheritance, polymorphism, and linkage can lead to ambiguity.
42 Inheritance Inheritance allows different objects to be treated in the same

general way.
Inheritance as used in Object Oriented Technology is combining
several like things into a fundamental building block. The
programmer is allowed to take a group of these like things and
refer to them in a general way. One routine can be used for all
types that inherit from the fundamental building block. The more
often a programmer can use the generic behavior of the parent,
the more productive the programmer is. The problem I see is that
the generic behavior will not always be precise enough for all the
applications, and that critical judgement is required to determine
when the programmer needs to specialize the behavior of one of
the object rather than use the generic. Who will issue that critical
judgement? Who will find all the instances where the general
case is too far away from the precision required?

43 Inlining Flow Analysis, recommended for levels A-C, is impacted by
Inlining (just what are the data coupling and control coupling
relationships in the executable code?). The data coupling and
control coupling relationships can transfer from the inlined
component to the inlining component.

44 Inlining Stack Usage and Timing Analysis, recommended for levels A-D,
are impacted by Inlining (just what are the stack usage and worst-
case timing relationships in the executable code?). Since inline
expansion can eliminate parameter passing, this can effect the
amount of information pushed on the stack as well as the total
amount of code generated. This, in turn, can effect the stack
usage and the timing analysis.

45 Inlining Structural Coverage Analysis, recommended for levels A-C, is
complicated by Inlining (just what is the “logical” coverage of the
inline expansions on the original source code?). This is generally
only a problem when inlined code is optimized. If statements are
removed from the inlined version of a component, then coverage

of the inlined component is no longer sufficient to assert coverage
of the original source code.

46 Inlining Conformance to the guidelines in DO-178B concerning
traceability from source code to object code for Level A software
is complicated by Inlining (is the object code traceable to the
source code at all points of inlining/expansion?). Inline expansion
may not be handled identically at different points of expansion.
This can be especially true when inlined code is optimized.

47 Inlining Inlining may affect tool usage and make structural coverage more
difficult for levels A, B, and C.

48 Structural coverage The unrestricted use of certain object-oriented features may
impact our ability to meet the structural coverage criteria of DO-
178B.

49 Structural coverage Statement coverage when polymorphism, encapsulation or
inheritance is used.

50 Templates Templates are instantiated by substituting a specific type
argument for each formal type parameter defined in the template
class or operation. Passing a test suit for some but not all
instantiations cannot guarantee that an untested instantiation is
bug free.

51 Templates Nested templates, child packages (Ada), and friend classes (C++)
can result in complex code and hard to read error messages on
many compilers.

52 Templates Templates can be compiled using "code sharing" or "macro-
expansion". Code sharing is highly parametric, with small
changes in actual parameters resulting in dramatic differences in
performance. Code coverage, therefore, is difficult and mappings
from a generic unit to object code can be complex when the
compiler uses the "code sharing" approach.

53 Templates Macro-expansion can result in memory and timing issues, similar
to those identified for inlining.

54 Templates The use of templates can result in code bloat. Many C++
compilers cause object code to be repeated for each instance of a
template of the same type.

55 Tools How can we meet the structural coverage requirements of DO-
178B with respect to dynamic dispatch? There is cause for

concern because many current Structural Coverage Analysis tools
do not “understand” dynamic dispatch, i.e. do not treat it as
equivalent to a call to a dispatch routine containing a case
statement that selects between alternative methods based on the
run-time type of the object.

56 Tools How can we meet the control and data flow analysis requirements
of DO-178B with respect to dynamic dispatch?

57 Tools How can deactivated code be removed from an application when
general purpose libraries and object-oriented frameworks are used
but not all of the methods and attributes of the classes are needed
by a particular application?

58 Tools How can we enforce the rules that restrict the use of specific OO
features?

59 Other Implicit type conversion raises certification issues related to
source to object code traceability, the potential loss of data or
precision, and the ability to perform various forms of analysis
called for by [DO-178B] including structural coverage analysis
and data and control flow analysis. It may also introduce
significant hidden overheads that affect the performance and
timing of the application.

60 Other Overloading can be confusing and contribute to human error
when it introduces methods that have the same name but different
semantics. Overloading can also complicate matters for tools
(e.g., structural coverage and control flow analysis tools) if the
overloading rules for the language are overly complex.

61 Other Loss of traceability due to the translation of functional
requirements to an object-oriented design.

62 Other Functional coverage of the low level requirement
63 Other Philosophy of Functional Software Engineering - Most of the

training, tools and principles associated with software engineering
and assurance, including those of RTCA DO-178B, have been
focused on a software function perspective, in that there is an
emphasis on software requirements and design and verification of
those requirements and the resulting design using reviews,
analyses, and requirements-based (functional) testing, and RBT
coverage and structural coverage analysis.

Philosophy of Objects and Operations - Although generally
loosely and inconsistently defined, OOT focuses on "objects" and
the "operations" performed by and/or to those objects, and may
have a philosophy and perspective that are not very conducive to
providing equivalent levels of design assurance as the current
"functional" approach.

64 Other Software/software integration testing is often avoided. The
position defended by the industry is that the high level of
interaction between a great number of objects could lead to a
combinative explosion of test cases.

